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ABSTRACT 

In the living organism, almost entire cell functions are performed by protein-protein interactions. As 
experimental and computing technology advances, yet more Protein-Protein Interaction (PPI) data becomes 
processed, and PPI networks become denser. The traditional methods utilize the network structure to 
examine the protein structure. Still, it consumes more time and cost and creates computing complexity 
when the system has gene duplications and a complementary interface. This research uses gene expression 
patterns to introduce a deep artificial ecosystem for gene duplication counting and cancer cell prediction. 
The main objective of this research is to predict the MYC proteins influence level, which is in charge of 
controlling cell growth and death in gene expression of lung cancer. Small body parts are responsible for 
these protein interactions, which are crucial for understanding life's activities. To achieve the research 
objective, a similarity-based clustering approach is employed for gene duplication counting, and Artificial 
Ecosystem Optimizer based Minimal Gated Recurrent Unit network (AEOMGRU) network-based 
approach is introduced to predict the cancer gene patterns. The proposed models' efficiency is compared to 
recently develop bio-inspired optimizer deep neural network techniques such as GAANN, PSOANN, and 
classic GRU. The efficiency of the proposed classifier shows the highest concerning the performance 
metrics weight average accuracy ratio of 99.08%, average precision rate of 99.2%, least root mean square 
error of 0.2%, and least mean absolute error of 0.5%. 

Keywords: Protein-Protein interaction, MYC Protein structure, Clustering, Gene duplication counting, 
Lung cancer, Minimal GRU network 

1. INTRODUCTION 

Protein-protein interactions PPIs [1] are physical 
contacts of high specificity established between 
two are more protein molecules as an effect of 
biochemical reaction steered by interactions that 
include hydro bounding electrostatic forces and 
hydrophobic effect [2-3]. The PPIs play a 
significant role during the gene duplication 
process, and some of the influence of the protein 
to create disease in human beings MYC, 
FGFR1and ERBB2 [4-6]. Therefore, identifying  
 
the PPIs is important for understanding the 
mechanism of life activity. The below figure 1 
shows the structure [7] of MYC locus (top), gene 
(red line), and MYC protein organization 
(bottom).  It shows that a variety of proteins 

interacts and regulates the MYC protein's activity. 
The Protein produces 439 amino acids.  Gene 
duplication [8] is a key process that creates a new 
genetic organism during molecular development. The 
replication mechanism has been performed in many 
ways, such as the paralogs gene, orthologous gene, 
and d analog gene [9-10]. The paralogs [11] 
replicates genes within the same species. 
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Fig. 1 General Structure of MYC Protein Interaction 
 
In contrast, orthologous [12] replicates genes after 
the speciation event from the same parent gene. In 
analog replication, a gene with similar functions 
and characteristics and presents in different 
species is known as an analog gene [13].  The 
diagrammatical representation of this gene 
replication is shown in figure 2.  
 

 
Fig. 2 General Mechanism of Gene Duplication 

 
The replications of on cogenes [14] play a major 
role in the formative tithe of many cancers. In 
contrast, some abnormal proprotein applications 
counter many types of cancers, according to the 
earlier research [1he, MYC, CCND1, and ERBB2 
proteins are replicated 20%, the FGFR1 and 
FGFR2 are replicated 12% in breast cancer cells. 
The HRAS, KRAS, and MYB proteins are 
replicated 30%, 20, and 15-20% respectively in 
colorectal cancer cells. The CCNE, KRA, S, and 
MET proteins are replicated 15%, 10%, and 
1,0%, respectively, in gastric cancer [16-18]. The 
MYC, ERB,B2, and AKT2 proteins are replicated 
20-30%, 15-30%,and 12% in ovarian cancer. 
According to earlier studies, the MYC protein is 
identified as an influential protein to cause 

cancers like lung cancer, breast cancer, gastric 
cancer, ovarian cancer, and so on [19-21]. Deep 
neural networks are effective in various fields, and 
their use in computational biology is growing by the 
day [22]. Several studies have employed deep 
learning algorithms to predict PPI labels [23-25]. 
As a result of the background analysis, this research 
has primarily focused on the MYC protein's gene 
expression pattern duplication counting based MYC 
gene influence in lung cancer gene expression 
patterns identification and introducing a classification 
tool for predicting cancers causing gene expression 
patterns and a clustering tool for gene duplication 
counting. There are currently only two patterns for 
gene clustering that can be reset or updated, whereas 
this manuscript proposes three patterns. This study 
uses a deep artificial ecology network to quantify 
gene duplications and forecast cancer cells based on 
gene expression patterns. A similarity-based 
clustering methodology is used to count gene 
duplications in this framework. An Artificial 
Ecosystem Optimizer-based Minimal Gated 
Recurrent Unit network (AEOMGRU) network-
based technique is used to forecast cancer gene 
patterns. The main objective of this research is to 
predict the MYC proteins influence level, which 
oversees controlling cell growth and death in gene 
expression of lung cancer. Small body parts are 
responsible for these protein interactions, which are 
crucial for understanding life's activities. However, 
the advantage of AEOMGRU over existing methods 
is that the proposed method can model a collection of 
more efficient records and each pattern can be 
assumed to be dependent on previous ones. 
The research paper has been organized in the 
following manner; section 1 describes the general 
introduction of the problem definition, section 2 
details on the related research works, section 3 brief 
about the methodologies used for gene duplication 
counting and predicting cancers causing gene 
expression patterns, section 4 summarizes the 
evaluation results and discussions of the proposed 
approach. Finally, section 5 confers the conclusion of 
the research findings. 
 
2. RELATED WORKS 

The related research part discussed the earlier 
research on gene duplication problems, protein-
protection problems, cancer protein identification 
problems and was utilized to support this research. 
Lai et al. developed a silicon docking approach to 
predict protein-protein interaction among 16 
BdMAPKs and 86 BdPP2C2s in B. Furthermore, the 
prediction accuracy of the approach is investigated 
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with docking site 3D protein structures. It reveals 
that the docking site also predicts 96 pair 
imparities two proteins and the. The fancy of the 
prediction approach is also evaluated with a 
staring database, which obtained a less false 
positive rate. Jiang et al. created a framework to 
predict patterns of repeated gene evaluation in 
duplicate genes. It analyzes genomes of 90 
different eukaryotes and predicts the number of 
protein families' significant functional 
differentiation during gene duplication. 
Moreover, it can attribute about 6% of recurrent 
sequence evaluation between Paralogs. Dunk and 
Snel constructed a duplicate gene D, gene lossL, 
and horizontal gene transfer T-based DTL 
framework to count the evolution history of a 
gene family.  It came to randomly produce 
histories for a specified size of two dissimilar 
species, the rooted caterpillar and complete binary 
tree. It can also compute the range of exponential 
growth she numbers of histories of random 
species trees size do 25. The evaluation results 
prove that the horizontal gene transfers in a 
dramatic increase in the amount of history. 
Chauve and Ponty presented mathematical 
models for genomic duplication problems. It 
provides ANN algorithmic ANN approach to 
solve the minimum episode ME clustering 
problem. It also combines the first linear time and 
space algorithm for the ME clustering problem at 
any interval. It is also generalized to allow every 
evolution scenario. Paszeka and Gorecki 
introduces a technique to predict the disruption of 
specific protein interactions in cancer patients 
using somatic mutation data and protein 
interaction networks. It uses a smoothing 
approach to score for edge nodes in the 
interaction network, which is used to qualify the 
proximity of each edge to somatic mutation in 
individual samples. Ruffalo and Bar-Joseph 
developed a tool to predict interacting prologs 
between the two protein families, maximizing the 
detectable co-evolutionary signals. Furthermore, 
this approach is generalized to predict on genomic 
co-localization of a gene coding for interacting 
proteins. Gueudre et al. developed a once- 
protein-protein interaction identification protocol. 
It observes the enhanced sensitivity of STK11 
silenced lung cancer cells to the FDA-approved 
CDK4 based on the STK11-CDK4 connectivity. 
The OncoPPI approach is focused on finding the 
PPI resources that link cancer genes into a 
signaling network for predicting the tumor 
vulnerabilities for therapeutic examination. Li et 
al. presented similarity approach for PPIs network 

from the perspective of proteins complementary 
interface and gene duplication to improve the 
prediction accuracy. Chen et al. introduced a novel 
nature-inspired meta-heuristic, an artificial 
ecosystem-based optimization algorithm. This 
approach mimics the three unique behavior of living 
organisms such as production, consumption, and 
decomposition. The efficiency of the new optimizer 
is evaluated with benchmark optimization functions 
for eight real-world engineering problems. The 
evaluating result shows that the new optimizer 
outperforms than comparison algorithms. Zhao et al. 
Applied gated recurrent unit network model for 
wireless intrusion detection problem. The 
performance of the network classifier is tested with 
the NSL-KDD dataset. Also,a comparison has been 
performed with Artificial Neural Network, Feed 
Forward Neural Network, Long Sort Term Memory, 
Random Forest and Naive Bayes. The evaluation 
result shows that the GRU classifier obtained 99.35% 
validation accuracy, which is s maximum accuracy 
rate comparison approaches. Kasongo and Sun 
introduced a bio-inspired deep classifier, which 
integrates the genetic algorithm with the artificial 
neural network GAANN [37]. It replaces the two 
worst solutions for a population with two solutions 
for each population already stored in ANN. The 
classifier is designed to improve the performance as 
well as to reduce the computation time. Jose Anand 
et al. developed a recommended system for 
preference prediction in a multi-criteria 
recommendation system, which is utilized particle 
swarm optimization (PSO) to train ANN. The 
PSOANN integrates the multi-criteria rating 
information system and determining the preferences 
of users. Hamada and Hassan introduced an adaptive 
evolutionary algorithm for predicting negative 
linkages from PPI networks, optimized using the 
Minimum Weak Edge-Edge Domination (WEED) 
set. The approach could increase the quality of PPI 
data, according to the encouraging results achieved 
on the MINT dataset. Izudheen presented the dataset 
generation through Negatome, Random pair, and 
Recombine pair approaches were examined at three 
degrees of development. The N-Gram 
methods were used to accomplish feature extraction 
and feature selection. Support Vector Machine, 
Decision Tree, Neural Network, and Naive Bayes 
classifiers were used in ensemble classification and 
evaluation. The Genetic-PSO method offered an 
improved optimization technique represented through 
the search operation. Three network alignment 
algorithms based on distinct ideas were proposed in 
the reference [41]. They scored a PPI network 
alignment using sequence data, network topology, 
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and subnetwork module data. They then used 
efficient methods (heuristics and convex 
optimization) to generate alignments by 
maximizing the alignment scores. Ge et al. 
introduced a multi-level model LPPI to increase 
large-scale PPI accuracy and speed of large-scale 
PPI prediction. They created a weighted network 
by calculating node similarity using protein 
characteristics. Then, by lowering the size of the 
weighted graph, Graph Zoom was employed to 
speed up the embedding process. The rebuilt 
graph was then used to understand graph topology 
properties using graph embedding methods. 
Furthermore, the chance of two proteins 
interacting was predicted using the linear Logistic 
Regression (LR) model. Su et al, proposed a 
genetic algorithm based on community detection 
for feature selection and compare the efficacy of 
the proposed strategy. Rostami et al. presented 
classifying the data narrowed the possible values 
and eliminated ambiguity.The new method's 
performance was compared to that of well-known 
and state-of-the-art semi-supervised feature 
selection approaches on eight datasets. Rostami et 
al., the author proposed a graph embedding 
method called ExEm that uses dominating-set 
theory and deep learning approaches to capture 
node representations. The extracted expert 
embeddings can be used in various ways. A novel 
strategy uses expert vectors to calculate experts' 
scores and recommends experts extend these 
embeddings into the expert recommendation 
system.Nikzad-Khasmakhi et al. examined the 
accuracy-efficiency trade-off for various 
structured model pruning methods and datasets 
(CIFAR-10 and ImageNet) on TPUs using the 
VGG-16 model as an example (TPUs) and 
demonstrated that structured model pruning could 
significantly reduce model memory usage and 
speed on TPUs without compromising accuracy, 
particularly for small datasets. 

Most of the research works discussed earlier in 
this section focus on partial parts alone, whether 
gene duplication prediction problems or protein-
protein interaction prediction problems. All the 
above-related works failed to integrate similarity-
based gene duplication prediction efficiently and 
the deep learning-based artificial ecosystem 
optimizer. GANN is only expressed in a 
particular tissue type and the early stages of 
development, whereas MYC is found throughout 
the body. MYC, for example, is concentrated in 
the newborn mouse's forebrain, kidney, and 
hindbrain, but it is absent from nearly all the 

animal's tissues in adults. Sun et al.discussed that 
coexist in mutualistic endosymbiosis with the roots of 
most vascular plants as Arbuscular Mycorrhizal 
(AM) fungi, which belong to an early branching 
fungal lineage called Glomeramycotina. With the 
inability of the fungi and plants to work together, 
they need to exchange phosphorus for carbon. This 
helps the plant's nutrition and ecosystem productivity. 
It is only through the exchange of signals with the 
root's cortical cells that they can grow into the root 
cortex and then differentiate into branching 
arbuscules. Skinnider et al. presented the arbuscules 
are housed in apoplastic compartments within the 
cortical root cells and are responsible for exchanging 
nutrients with the host.To combat the coming 
worldwide catastrophe of antibiotic resistance, we 
urgently require new antibiotics. Medical secondary 
metabolism has long been the principal source of 
clinically useful antibiotics. Bioinformatics has found 
many natural antibiotics that are still unidentified. 
Witch weeds, a group of parasitic plants of the genus 
Striga, is a major cause of crop loss in Sub-Saharan 
Africa and a global threat to agriculture. Due to a 
paucity of genetic information, it's been difficult to 
understand Striga parasite biology, which could lead 
to agricultural remedies. During the development of 
Striga's haustorium, genes involved in lateral root 
development were found to be co-opted, suggesting a 
partially co-opted pathway during the evolution of 
the haustorium. Yoshida et al. presented that most 
species have smaller genomes than expected based on 
polyploidy prevalence in their lineages, suggesting 
selection for genome shrinking. However, when 
ancestral GS is compared to the occurrence of 
ancestral polyploidy, it appears that DNA loss after 
polyploidy was extremely minimal.After polyploidy, 
selection may favor genome downsizing due to two 
hypotheses: reducing the cost of nucleic acid 
synthesis in both the nucleus and the transcriptome I 
by decreasing nitrogen (N) and phosphate (P) in the 
nucleus, and (ii) by reducing the effect of GS scaling 
effects on cell size, which affects CO2 uptake and 
water loss.The performance metric of many 
approaches demands improved results in protein-
protein interaction prediction. Still,MYCresearches 
are considered as incomplete without interlinking 
concepts and in this research utilizes after protein-
protein interaction the MYC protein's gene 
expression pattern duplication counting based MYC 
gene influence in lung cancer gene expression 
patterns identification has been mainly focused in this 
research to resolve the research gab in the earlier 
studies and also introduce a classification tool to 
predicting cancers causing gene expression patterns 
and a clustering tool for gene duplication counting. 
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The following steps archive the research motive. 
The lung cancer gene expression patterns are 
taken to count the gene duplication percentage 
using Similarity-based clustering. Anticancer 
gene patterns are utilized for training and 
predicting cancer by thee using the AEOMGRU 
network. The subsequent section describes the 
methodologies are used to archive the objective of 
this research. 
 
3. PROPOSED METHODOLOGY 

 

Fig. 3 Proposed Methodology Flow diagram 
 
Figure 3 illustrates the workflow of the research 
work; it offers two different approaches 
functionality to solve the oncogene gene and 
protein prediction. Initially, the Gene patterns are 
collected from data sources, and the gene patterns 
are taken for preprocessing.  The preprocessed 
gene patterns are taken as input to the clustering 
algorithm, the similarity approach utilized to form 
a gene cluster, and the clustered genes are ranked 
to count the gene duplication. The MYC proteins 
family influence levels in lung cancer genes are 
identified. The second approach is 
AEOMnetwork-based based lung cancer gene 
pattern classification. The detailed descriptions of 
the approaches are explained in subsequent 
sections.  
 
Data source  

This section discusses the data sources utilized to 
evaluate the efficiency of the classification and 
clustering tool. The MYC protein is identified as 
an influential protein to cause cancers like lung 

cancer, breast cancer, gastric cancer, ovarian 
cancer,etc. Therefore, the MYC protein's gene 
expression pattern dataset has been taken from this 
research's publicly available NCBI [43] database. The 
dataset contains a high volume of gene expression 
patterns with irrelevant information. During the 
preprocessing, the irrelevant details are removed 
before processing. The gene patterns are represented 
in text format. The classification model is trained 
with 85% of gene patterns and the remaining 15% of 
gene patterns taken to test network performance.  

 
Fig. 4 Sample Genome Pattern and Data Viewer 

 
Protein structure is determined by the sequence of 
amino acids and by local, low-energy chemical bonds 
between atoms in the polypeptide backbone and 
amino acid side chains. The structure of a protein is 
critical to its function; if a protein loses its shape 
structurally, it may no longer be useful. Figure 4 
illustrates the genome data viewer, which contains 
details of cancer-causing proteins gene expression 
patterns, gene names, and location in the 
chromosome, etc. The clustered gene patterns are 
compared with the help of this information,an online 
genome data viewer tool offered by NCBI.  
https://www.ncbi.nlm.nih.gov/genome/gdv/browser/g
enome/?id=GCF_000001405.39. 
 
Data Preprocessing and Normalization  

The gene expression patterns collected from 
microarray have come in the text; therefore, 
processing the text data directly in any machine 
learning algorithm is possible. So the collected gene 
pattern is normalized using the bag of the word (bow) 
approach. The output values of the bow function have 
been normalized in standard form by using the 
following derivation, 

𝐺𝑃  =  𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 (𝐺𝑃) 𝐺𝑃

= 𝑟𝑎𝑛𝑑(1, 4);             
𝐺𝑃 = 𝐺𝑃 ∗ 20;                 (1) 
The above eq.(1) is used to normalize the converted 
gene pattern. This normalized gene vector is utilized 
for cluster-based gene duplication counting and 
AEOMGRU network-based cancer gene pattern 
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prediction. The Similarity-based gene clustering 
for duplication count is described in the 
subsequent sections. 
 
Similarity-based gene clustering for 
Duplication Count  

The gene duplication counting approach contains 
two steps first is similarity gene clustering and 
ranking-based duplication counting.  

Similarity-based gene Clustering 

Clustering is an essential process in gene 
duplication counting. During the clustering 
process, similar patterns are clustered and ranked 
before gene duplication counting. The 
mathematical representation of gene similarity 
[44] based clustering is given as follows, 

𝑠𝑖𝑚൫𝐺𝑃 , 𝐶መ൯ = 1 −
∑ ∑ หீ ೕିመห

ೕసభ

సభ

∑ ∑ ൫ீ ೕାመ൯
ೕసభ


సభ

 (2) 

Where𝐺𝑃 Denotes gene features and𝐶መDenotes the 
gene cluster's centroid value. Idenote the position 
of gene pattern, and j denotes the position of gene 
feature. The𝐺𝑃

Denotes the ith gene pattern'sjth 
feature value, and 𝑠𝑖𝑚൫𝐺𝑃 𝐶መ൯ is used to calculate 
Similarity among gene patterns and a cluster 
centroid. if a gene value and centroid values get 
maximum Similarity, then that gene points can 
belong to that group, calculated using the eq. (2). 
Mathematical derivation to calculate centroid 
value as follows, 

𝐶መ =  
∑ ∑ ீ ೕ


ೕసభ


సభ

ே
   (3) 

Where𝐺𝑃
 denote the position of gene patterns 

belongs to kthcaluster, in eq. (3)𝐶መIt is used to 
calculate the centroid value for each cluster, and 
𝑁denotes the total number of genes patterns in 
kthgene cluster. Mathematical derivation to 
calculate Similarity among centroids is 
represented as follows, 

𝑠𝑖𝑚൫𝐶መ, 𝐶መ൯ = 1 −
∑ ∑ หመିመೕห

ೕసభ
ೖ
సభ

∑ ∑ ൫መାመೕ൯
ೕసభ

ೖ
సభ

 (4) 

Where𝐶መ denotes centroid value of ithgenecluster 
and𝐶መ denotes the centroid value of jthgene 

cluster, in eq. (4) 𝑠𝑖𝑚൫, 𝐶መ൯ is used to calculate the 
Similarity among two-gene cluster centroid. If 
two gene clusters have maximum similarity, then 
these two clusters are merged and forma new 
cluster. 
 Initially, the cluster center is randomly selected 
to calculate Similarity among each gene pattern. 
Each gene cluster's centroid updates its value for 

each iteration by calculating the mean of clustered 
gene patterns value. This gene clustering process has 
been performed until cluster gene pattern values 
remain unchanged for two more iterations.  
 
Gene Duplication Counting 

Gene duplication counting is a significant process to 
identify influential proteins gene patterns. In this 
research similarity-based approach is utilized to 
count the influential gene pattern in lung cancer gene 
expression patterns. Mathematical derivation to 
calculate Similarity among ranked gene patterns with 
cancer-causing proteins gene patternsare represented 
as follows, 

𝑠𝑖𝑚൫𝑅𝐺𝑃, 𝐺𝑃൯ = 1 −
∑ |ோீିீ|ೖ

సభ

∑ (ோீାீ )ೖ
సభ

𝑅𝐺𝑃 =

𝑚𝑎𝑥൫𝐶መ൯𝑖 ∈ 1, … 𝑘  (5) 
Where in eq.(5𝑅𝐺𝑃Denotes the ranked gene, and  𝐺𝑃 
denotes the manually collected cancer-causing 
genepatterns, and 𝑚𝑎𝑥൫𝐶መ ൯The gene clustering 
process has been performed to group similar gene 
patterns for gene ranking. It is used to rank gene 
patterns based on a maximum similarity value. The 
topmost ranked gene values were selected from each 
cluster after ranking. 
 
Multiview Surveillance Techniques 

F-DES-Fast and deep event summarization method 
successfully reduces video content while retaining 
important information such as events, according to 
the results of experiments. Real-time applications 
require the system to be up and running to do 
so.Equal partition-based approach for event 
summarization in videos:For video,to obtain the 
optimal number of key-frames without incurring 
additional computational costs by implementing 
Davies-Bouldin Index, a cluster validation technique. 

Event bagging: A novel event summarization 
approach in Multiview surveillance videos:It used a 
meta approach to train the ensembles so that the 
interdependency and illumination changes of views 
have taken into account during the training 
phase.Deep event learning boost-up approach:The 
work demonstrates an efficient and accurate 
technique for detecting and summarizing the event in 
multi-view surveillance videos using boosting, a 
machine learning algorithm, as a solution. It is 
possible to capture interview dependencies across 
different video views by using weak learning 
classifiers in the boosting algorithm. 
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The model may perform better by SOMS: an 
efficient SOM technique for event summarization 
in multi-view surveillance videos for real-time 
applications, such as surveillance and security 
systems. Our proposed SOM-based 
summarization technique is compared to current 
state-of-the-art models using both qualitative and 
quantitative assessment.HDML: Habit detection 
with machine learning:The HDML model 
analyses our mood and suggests activities that 
improve our mood when we are in a bad mood or 
unproductive state. The model's overall accuracy 
is around 87.5 percent. 
DCR-HMM: Depression detection based on 
Content Rating using Hidden Markov Model:The 
use of a Hidden Markov Model to detect 
depression using a new method based on how 
depressed the subject rates the content (HMM). 
The subject has shown a series of materials and, 
depending on how the subject reacts, predicts 
whethera subject is depressed.Stock Price 
Prediction Using Recurrent Neural Network and 
Long Short-Term Memory: The recommended 
model uses a different approach. Instead of using 
data for a specific model, latent dynamics of the 
data set are identified with the help of deep 
learning algorithms. 
Text query-based summarized event searching 
interface system using deep learning overcloud:A 
deep learning framework extracts the features of 
moving objects in the frames. Local alignment 
captures the dependencies between different 
views of the video.Prediction of Liver Disease 
Using Grouping of Machine Learning Classifiers 
and many more: The Indian Liver Patient dataset 
was used. The results show that using grouping 
classification algorithms improves the accuracy of 
illness forecasting substantially. 
This research identifies the MYC protein 
influence in gene duplication in lung cancer cells 
using gene duplication counting. These genes 
pattern values are compared with cancer-causing 
proteins gene patterns values. If a gene value gets 
maximum Similarity with the comparison gene 
pattern value, then the appropriate cluster's genes 
are taken for gene counting. Implementation of 
BLAST or FASTA algorithm for fast results for 
protein similarity searches, the BLAST algorithm 
does not produce the most accurate results 
possible; there is a significant risk that BLAST 
will miss a distant similarity between sequences 
that can be readily detected. During the evaluation 
process, the Similarity-based gene duplication 
counting approach is measured. The nearly 14% - 
15% of MYC protein gene duplication pattern has 

been identified in the lung cancer gene expression 
dataset. The subsequent section discusses the 
AEOMGRU based cancer proteins gene patterns 
classification. 
 
AEOMGRU based Cancer Proteins Gene Patterns 
Prediction   

The gated recurrent unit GRU network is an add-on 
version of the Long Short Term Memory (LSTM) 
network. The GRU network and LSTM work similar, 
but it doesn't use a cell layer to transfer data. The 
GRU network has several benefits over LSTM, such 
as less expensive and faster performance. During the 
network train, the current input is learned from its 
previous hidden layer node's output. The minimal 
gated unit is similar to the fully connected gated unit. 
Still, thesenetworks work slightly differently than 
fully connected; GRU, the update and reset gate 
vector, is fused as forget gate. According to earlier 
research, the gated units perform well for polyploidy 
sequence-related dating problems. These proteins are 
frequently mixed structures for stereochemical, with 
the theory being that the helices link the parallel 
strands that form the sheet. Parallel processing can be 
performed based on the methods. 

Therefore, the minimal gated recurrent unit has been 
utilized in this research to predict the cancer-causing 
protein's gene patterns.  The classic minimal GRU 
network using the gradient descentoptimizer to 
update network weight by back-propagating the 
network, but this approach is simple. It consumesa lot 
of time to predict desired results. It is a global 
optimization approach, and it takes less computation 
time to reach global minima. Therefore, the artificial 
ecosystem optimizer has been utilized to resolve the 
issues mentioned above in the classic optimizer in the 
gated recurrent unit network model. The efficiency of 
the bio-inspired optimizer has already been used in 
related work parts.   
The following derivations of the classifier areused to 
perform the gene pattern prediction process,  
𝐺𝑃 = ൛𝐺𝑃ଵଵ𝐺𝑃ଵଶ … 𝐺𝑃ଵ𝐺𝑃ଶଵ ⋮ 𝐺𝑃ଶଶ ⋮ ⋯ 𝐺𝑃ଶ ⋮⋮

𝐺𝑃ଵ𝐺𝑃ଶ … 𝐺𝑃ൟ   (6) 
Where in eq.(6), the GP denotes cancer-causing 
proteins gene pattern vector, which contains the 
number of gene patterns and j number of gene 
features and𝐺𝑃Denotes the position of input gene 
pattern feature value.  The minimal gated recurrent 
unit generally uses sigmoid and tangent activation 
functions to decide state activation for each node 
operation.   
𝑓𝑜𝑟௧ = 𝜎(𝑊𝐺𝑃௧ + 𝑈ℎ௧ିଵ + 𝑏𝑖)𝜎(𝑎𝑐) =

(1 + 𝑒ି)ିଵ (7) 
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Ineq.(7), the𝑓𝑜𝑟௧ denotes the forget gate value at 
time t and the symbol𝜎 denotes the sigmoid 
activation function gate, 𝑎𝑐 denotes the actual 
gene pattern class value, and 𝑝𝑐denotes the 
predicted class value. The default threshold range 
of the sigmoid activation is denoted as sigmoid (0 
1), 0 represents an unsuccessful node, and 1 
represents a successful node. Still, the values 
between >0 and <1 are considered for back-
propagation. The𝑊𝐺𝑃௧  denotes the weight of 
each forgets gate node of gene pattern at time t, 
𝑈  denotes the learning rate of the forgets gate, 
theℎ௧ିଵ denotes the currently hidden nodes input 
value and the𝑏𝑖The forget gate node calculates 
the sigmoid value for input gene patterns and 
currently hidden nodes and parameters values. 
Denotes bias assigned for each forget node. 
Finally, the sigmoid gate decides whether to keep 
node value or ignore based on the state activation 
threshold. 
ℎ௧ = 𝜕ℎ(𝑊ℎ𝐺𝑃௧ + 𝑈ℎ(𝑓𝑜𝑟௧ ∗ ℎ௧ିଵ) +

𝑏𝑖ℎ)𝜕(𝑎𝑣) =
௦௦௩

௦௦௩
=  

ೌೡିషೡ

ೌೡାషೡ  (8) 

In eq. (8)ℎ௧  denotes the candidate vector value 
at time t and the symbol𝜕ℎ denotes the tangent 
activation function gate for each candidate, 𝑎𝑐 
denotes the actual glass value of 
neattern,d,and𝑝𝑐denotes the predicted class value. 
This activation function decides the activation by 
using 𝜕(𝑎𝑣)Value the, which is calculated by 
dividing t𝑠𝑖𝑛 𝑠𝑖𝑛(𝑎𝑣) value and 𝑎𝑣) value. The 
default threshold range of the tangent activation is 
denoted as tangent (-1 1), -1represents an 
unsuccessful node,and 1 represents successful 
node b, at the values between >-1 and <1 is 
considered for back-propagation. 
𝑊ℎ𝐺𝑃௧denotesthe weight of each hidden 
candidate output node's output of gene pattern at 
time t, and the𝑏𝑖ℎ Denotesassigned for each 
hidden candidate node's output. The candidate 
vector calculates the agent at value for each gene 
pattern along with the current hidden node's value 
and for gesereget t node's favor time stamp prime 
stamp. Finally, the tangent gate decides whether 
to keep node value or ignore based on the state 
activation threshold.   
𝑜௧ = (1 − 𝑓𝑜𝑟௧) ∗ ℎ௧ିଵ + 𝑓𝑜𝑟௧ ∗ ℎ௧ (9) 
In eq.,(9) 𝑜௧ denotes the output gate value at time 
t and the symbol𝑓𝑜𝑟௧ denotes the candidate vector 
value at time t, the𝑊ℎ denotes the weight of each 
hidden candidate output node's output, and t𝑏𝑖ℎ 
denotes bias assigned for each hidden candidate 
node output. Finally, the output gate node learns 
the successful gene patterns features value base 

for getting the candidate vector values after the 
element-wise visitations. The output node store stores 
predicted values for each pattern when the gemmoid 
gate and tangent gate's predicted value is near the 
activation threshold (gene patterns class value; 
otherwise, back-propagate the network using an 
artificial ecosystem optimizer until the specific time 
stamp gets over. The network weights have been 
updated using AEO operators such as producer, 
consumer, and decomposer. The production operator 
is represented as follows, 

𝐺𝑃ଵ(𝑡 + 1) = (1 − 𝑙𝑐)𝐺𝑃(𝑡) + 𝑙𝑐𝐺𝑃ௗ(𝑡)𝑙𝑐

= ൬1 −
𝑡

𝑀𝐼
൰ 𝑟ଵ 

𝐺𝑃ௗ = 𝑟(𝑈 − 𝐿) + 𝐿  (10) 
wherein eq. (10) i denotes the size of the gene pattern 
population, MI denotes the maximum iteration L, and 
U denotes the lower and upper limits,  𝑟 denotes the 
random vector. Its range is [0,1], the lc is denoted 
linear coefficient value. Th𝐺𝑃ௗ  is randomly 
calculated gene feature from the population.  
The consumer factor operator is represented as 
follows, 
𝐺𝑃(𝑡 + 1) = 𝐺𝑃(𝑡) + 𝐶𝑁 ∗ ൫𝐺𝑃(𝑡) − 𝐺𝑃ଵ(𝑡)൯, 𝑖 ∈

[2, … . , 𝑛]  

𝐶𝑁 =
ଵ

ଶ
∗

௩భ

|௩మ|
𝑤ℎ𝑒𝑟𝑒𝑣ଵ~𝑁𝐷(0,1), 𝑣ଶ~𝑁𝐷(0,1)

 (11) 
Where in eq. (11) the consumption factor is denoted 
as 𝐶𝑁,𝐺𝑃ଵDenotes the position of gene feature and 
the 𝑁𝐷(0,1)Denotes the normal distribution range of 
mean𝑣ଵAnd standard deviation𝑣ଶ.The consuming 
behavior of carnivores is represented as follows,   

𝐺𝑃(𝑡 + 1) = 𝐺𝑃(𝑡) + 𝐶𝑁 ∗ ቀ𝐺𝑃(𝑡) − 𝐺𝑃(𝑡)ቁ , 𝑖 ∈

[3, … . , 𝑛]  
𝑗 = 𝑟𝑎𝑛𝑑([2𝑖 − 1])  (12) 
wherein eq. (12) j denotes the random number 
generator, which is generated random number by 
calculating 2𝑖 − 1. The consuming behavior of 
omnivore is represented as follows,  

𝐺𝑃(𝑡 + 1) = 𝐺𝑃(𝑡) + 𝐶𝑁 ∗ ൬𝑟ଶ ∗ ቀ𝐺𝑃(𝑡) −

𝐺𝑃(𝑡)ቁ൰ + (1 − 𝑟ଶ)(𝐺𝑃(𝑡) − 𝐺𝑃(𝑡))  

𝑤ℎ𝑒𝑟𝑒𝑖 ∈ [3, … . , 𝑛]𝑗 = 𝑟𝑎𝑛𝑑([2𝑖 − 1]) (13) 
Where in eq. (13), the𝑟ଶIsIt also a random number 
generator, but the range value is between [0, 1]. The 
decomposition behavior is represented as follows,  
𝐺𝑃(𝑡 + 1) = 𝐺𝑃(𝑡) + 𝐷𝐶 ∗ ൫𝑒 ∗ 𝐺𝑃(𝑡) −

ℎ ∗ 𝐺𝑃(𝑡)൯.     
𝑤ℎ𝑒𝑟𝑒,   
𝐷𝐶 = 3𝑢,   𝑢~𝑁𝐷(0,1)  
𝑒 = 𝑟ଷ ∗ 𝑟𝑎𝑛𝑑𝑖([1,2]) − 1   
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ℎ = 2 ∗ 𝑟ଷ −
1                                                                       
  (14) 
Where in eq. (14thee e, h, DC denotes the 
parameter to generate random numbers and 
normal distribution values. 
The AEO starts the optimization by randomly 
generating a gene pattern population to update the 
network weight during the backpropagation. At 
each timestamp, the first gene pattern features 
update its weight based on eq. (10), and for the 
other gene pattern features same probability is 
used to choose among eq. (11), eq. (12) and eq. 
(13) to update their weights. If every gene feature 
gives the store the best value, it is accepted, as 
best, and each gene feature updates its weight 
based on eq. (14). When the predicted gene 
feature value goes out of the lower or upper 
threshold value of activation function during the 
network weight updating process, the optimizer 
randomly generates gene patterns. The networks 
node's weight updating process has been 
performed until it reaches the specified timestamp 
count.  

 
Fig. 5 General Architecture of AEOMGRU Network 
 
Above figure 5 illustrates how the AEOMGRU 
network node's weights updating process is 
performed using the AEO algorithm. The step-by-
step explanation of the network functions is given 
in the below algorithmic code.  
AEOMGRU algorithm 
Input: Protein gene pattern  
t = 𝐺𝑃 , ℎ = 0, 𝑏𝑖 =,U=0.02 // Initialize the 
population, hidden layer, bias value and learning    
                                                                rate 
FOR each i=1 to m 
 FOR each j=1 to n 

IF(GPij==not null) 
𝐺𝑃=rand(1,4); 

𝐺𝑃=𝐺𝑃*20; 
𝐺𝑃 =normalize(𝐺𝑃)   //Normalize the input 
gene patterns 
  ELSE  
𝐺𝑃  = 0  // delete row 
  END IF 
 END FOR 
END FOR 
FOR each t=1 to m 
  FOR each h=1 to n 
𝜎൫𝑊𝐺𝑃௧ + 𝑈ℎ௧ିଵ + 𝑏𝑖൯ //Compute the 
sigmoid value for forgetting gate value  
𝜕ℎ(𝑊ℎ𝐺𝑃௧ + 𝑈ℎ(𝑓𝑜𝑟௧ ∗ ℎ௧ିଵ) + 𝑏𝑖ℎ) //Compute 
the tangent value for candidate gate value 
      IF (𝜕ℎ == 1)&& (𝜎 == 1) 
𝑓𝑜𝑟௧ // forget state activate  
ℎ௧ // candidate vector state activate  
𝑜௧ = (1 − 𝑓𝑜𝑟௧) ∗ ℎ௧ିଵ + 𝑓𝑜𝑟௧ ∗ ℎ௧ // update 
output date value  
      ELSE IF (𝜕ℎ> -1) && (𝜎 > 0) 
 FOR each i=1 to m 
              FOR each j=1 to n 
𝐺𝑃(𝑡 + 1)      //update network nodes weight by 
using AEO  based back-     
                                                  propagating( using 
eq(10) - eq(14) ) 
               END FOR 
            END FOR 
𝑓𝑜𝑟௧ // forget state activate  
ℎ௧ // candidate vector state activate  
𝑜௧ = (1 − 𝑓𝑜𝑟௧) ∗ ℎ௧ିଵ + 𝑓𝑜𝑟௧ ∗ ℎ௧ // update 
output date value  
       ELSE 
𝑜௧ = 0 // ignore  
       END IF  
   END FOR 
END FOR 
Output: Predicted cancer gene patterns 
 
Initially, the gene expression pattern is taken as input 
to the AEOMGRU network.  The gene patterns are 
preprocessed before to AEOMGRU network's input 
layer. The normalized gene expression values are 
taken as input to the network, and the next important 
step is parameter initialization. Computes the forget 
node value and candidate vector value by calculating 
sigmoid value and tangent value for input node value 
and weight values hyperparameters. If the sigmoid 
value is lesser than a threshold, it updates the 
network weight by using AEO based back-
propagation until it reaches the stopping criteria. 
Finally, the output gate updates its values based on 
the forget gate node and candidate vector node for 
classifying the cancer gene pattern. The efficiency of 
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the new classifier is evaluated with the lung 
cancer dataset. The evaluation results are 
explained in the subsequent section.  
 
4. RESULTS AND DISCUSSIONS 

This section discusses the evaluation results of the 
AEOMGRU classification tools to evaluate the 
performance high dimensional gene expression 
patterns are utilized, which is described in the 
data source section. The accuracy values for gene 
datasets are predicted by Metagenome Gene 
prediction. Classifier's efficiency is compared 
with recently introduced bio-inspires minimize 
deep neural new approach such as GAANN, 
PSOANN,and classic GRU are taken for 
comparison.  The following evaluation metrics 
[45], [46] are utilized to evaluate the AEOMGRU 
classifier's performance.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 (𝐴𝑐𝑐) =
்௨௦௧௩ ା்௨ே௧௩

்௨௦௧௩ ା்௨ே௧௩ାி௦ே௧௩ ାி௦௦௧

  (15) 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 (𝑃𝑟) =
்௨௦௧௩

்௨௦௧௩ ାி௦௦௧௩
 

     
 (16) 

𝑇𝑟𝑢𝑒𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 (𝑇𝑃) =
்௨௦௧௩

்௨௦௧௩ ାி௦ே௧

     
  (17) 

𝐹𝑎𝑙𝑠𝑒𝑃𝑎𝑠𝑖𝑡𝑖𝑣𝑒 (𝐹𝑃) =
ி௦௦௧௩

்௨௦௧௩ ାி௦௦

     
  (18) 

𝑅𝑜𝑜𝑡𝑚𝑒𝑎𝑛𝑠𝑞𝑢𝑎𝑟𝑒𝑒𝑟𝑟𝑜𝑟 (𝑟ଶ) = ට
∑ (ೝିೝ)మಿ

ೝసభ

ே

     
  (19) 
𝑀𝑒𝑎𝑛𝐴𝑏𝑠𝑙𝑢𝑡𝑒𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝐸𝑟𝑟𝑜𝑟 (𝛼)  =
ଵ


∑

|ೝିೝ|

ೝ


ୀଵ     

  (20) 
Where in eq. (19) and eq. (20)𝐴𝑉Denotes the 
actual value of the class label in the rth position 
a𝑃𝑉  Denotethe predicted value in the rth position. 
N and n denote the total number of gene 
patterns—the eq. (15) to eq. (17) are various 
denotes accuracy matrices used to calculate the 
accuracy values and eq. (18) to eq. (20) are 
various denotes error rate metrics, which are used 
to calculate the error values. 
 

Table 1. Accuracy (%) values for Lung Cancer 
Gene Dataset 

Successf
ul 
Rounds 

GAAN
N 

PSOAN
N 

GR
U 

AEOMGR
U 

1 95.6 96.2 98.5 99.5 
2 93.9 95.7 97.3 99.2 
3 95.7 96.9 96.4 98.9 
4 92.3 95.2 96.9 98.7 
5 95.1 94.5 97.6 99.1 
 
Table 1 contains the accuracy value obtained by the 
GAANN, PSOANN, GRU, and AEOMGRU fother 
lung cancer gene dataset. It shows that the Artificial 
Ecosystem Optimizer helps train gene patterns to the 
Minimal Gated Recurrent Unit network proficiently. 
The AEOMGRU outperforms comparison algorithms 
for all the iterations, which has obtained a maximum 
of 99.5 % accuracy rate.   

 
Fig. 6 Accuracy (%) Values For Lung Cancer Gene 

Dataset 
Figure 6 demonstrates the accuracy value obtained by 
the GAANN, PSOANN, GRU, and AEOMGRU for 
the lung cancer gene dataset. It clearly shows that 
AEOMGRU obtains the maximum accuracy.  
 

Table 2. Precision (%) Values For Lung Cancer Gene 
Dataset 

Successf
ul 
Rounds 

GAAN
N 

PSOAN
N 

GR
U 

AEOMGR
U 

1 95.7 95.9 97.9 99.3 
2 92.8 96.4 98.1 99.7 
3 94.7 95.6 98.7 98.9 
4 94.2 95.4 97.2 99.8 
5 93.3 93.8 98.6 99.6 
 
Table 2 contains the precision value obtained by the 
GAANN, PSOANN, GRU, and AEOMGRU for the 
lung cancer dataset. It shows that the Artificial 
Ecosystem Optimizer helps the Minimal Gated 
Recurrent Unit network in gene patterns proficiently. 
The AEOMGRU outer than the comparison 
algorithms for all the iterations s has obtained a 
maximum of 99.8 % precision rate.   
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Fig. 7 Precision (%) Values for Lung Cancer Gene 

Dataset 
 

The above figure 7 demonstrates the precision 
value obtained by the GAANN, PSOANN, GRU, 
and AEOMGRU for the lung cancer gene dataset. 
It clearly shows that AEOMGRU obtains 
maximum precision. 
 

Table 3. True Positive (%) Values for Lung Cancer 
Gene Dataset 

Success
ful 

Rounds 

GAAN
N 

PSOA
NN 

GR
U 

AEOMG
RU 

1 94.9 95.1 98.9 99.8 
2 93.5 93.9 99.1 99.5 
3 95.6 94.2 98.5 99.2 
4 93.8 95.4 96.2 98.9 
5 94.2 94.8 98.4 98.6 
 
Table 3 contains the True Positive rate obtained 
by the GAANN, PSOANN, GRU, and 
AEOMGRU for the lung cancer gene dataset. The 
AEOMGRU outperforms comparison algorithms 
for all the iterations. It has obtained a maximum 
of 99.8 % True Positive rate. It shows that the 
Artificial Ecosystem Optimizer help strain gene 
patterns to the Minimal Gated Recurrent Unit 
network proficiently. 

 
Fig 8 True Positive (%) Values for Lung Cancer Gene 

Dataset 
 
Figure 8ddemonstrates the True positive rate 
obtained by the GAANN, PSOANN, GRU, and 
AEOMGRU effort for the cancer gene dataset. It 

clearly shows that AEOMGRU obtains the maximum 
true positive rate. 
Table 4. False Positive (%) Values for Lung Cancer Gene 

Dataset 
Successf
ul 
Rounds 

GAAN
N 

PSOAN
N 

GR
U 

AEOMGR
U 

1 5.1 4.9 1.1 0.2 
2 6.5 6.1 0.9 0.5 
3 4.4 5.8 1.5 0.8 
4 6.2 4.6 3.8 1.1 
5 5.8 5.2 1.6 1.4 
 
Table 4 contains the false positive rate obtained by 
the GAANN, PSOANN, GRU, and AEOMGRU for 
the lung cancer gene dataset. The AEOMGRU 
outperforms comparison algorithms for all the i; it 
has obtained a minimum of 0.2 % False Positive rate. 
It shows that the artificial ecosystem optimizer helps 
train gene patterns to minimal gated recurrent unit 
networks proficiently. 

 
Fig 9. False Positive (%) Values for Lung Cancer Gene 

Dataset 
 
Figure 9 demonstrates the false positive rate obtained 
by the GAANN, PSOANN, GRU, and AEOMGRU 
for the lung cancer gene dataset. It clearly shows that 
AEOMGRU obtains the minimum false positive rate. 
 

Table 5. Root Mean Square Error (%) Values for Lung 
Cancer Gene Dataset 

Successf
ul 
Rounds 

GAAN
N 

PSOAN
N 

GR
U 

AEOMGR
U 

1 4.3 4.1 2.1 0.7 
2 7.2 3.6 1.9 0.3 
3 5.3 4.4 1.3 1.1 
4 5.8 4.6 2.8 0.2 
5 6.7 6.2 1.4 0.4 
 
Table 5 contains the Root mean square error rate 
obtained by the GAANN, PSOANN, GRU, and 
AEOMGRU for the lung cancer gene dataset. The 
AEOMGRU outperforms comparison algorithms for 
all the iterations; a minimum of 0.2 % Root mean 
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square error rate has been obtained. It shows that 
the artificial ecosystem optimizer helps 
proficiently train gene patterns in the minimal 
gated recurrent unit network. 

 
Fig. 10 Root Mean Square Error (%) Values for Lung 

Cancer Gene Dataset 
 
Figure 10 demonstrates the Root mean square 
error rate obtained by the GAANN, PSOANN, 
GRU, and AEOMGRU for the lung cancer gene 
dataset. It clearly shows that the minimum Root 
meansAEOMGRU obtains a square error rate. 
 
Table 6. Mean Absolute Percent Error (%) Values for 

Lung Cancer Gene Dataset 
Successf
ul 
Rounds 

GAAN
N 

PSOAN
N 

GR
U 

AEOMG
RU 

1 4.4 3.8 1.5 0.5 
2 6.1 4.3 2.7 0.8 
3 4.3 3.1 3.6 1.1 
4 7.7 4.8 3.1 1.3 
5 4.9 5.5 2.4 0.9 
 
Table 6 contains the Mean absolute percent error 
rate obtained by the GAANN, PSOANN, GRU, 
and AEOMGRU for the lung cancer gene dataset. 
It shows that the Artificial Ecosystem Optimizer 
helps train gene patterns to the Minimal Gated 
Recurrent Unit network proficiently. The 
AEOMGRU outperforms comparison algorithms 
for all the iterations, and it has been obtained a 
minimum of 0.5 % Mean absolute percent error 
rate. 

 
Fig. 11 Mean Absolute Percent Error (%) Values for 

Lung Cancer Gene Dataset 

 
Figure 11 demonstrates the Mean absolute percent 
error rate obtained by the GAANN, PSOANN, GRU, 
and AEOMGRU for the lung cancer gene dataset. It 
clearly shows that AEOMGRU obtains the minimum 
Mean absolute percent error rate.  
 

Table 7: Abbreviations for the Datasets provided 
Datasets Abbreviations 
GAANN Genetic Algorithm 

Artificial Neural Network 
PSOANN Particle Swarm 

Optimization Artificial 
Neural Network 

GRU Gated Recurrent Unit 
PAR Photosynthetic Active 

Radiation 
MYB Myeloblastosis 
KRAS Kirsten Rat Sarcoma virus 

oncogenic 
 
The evaluation results prove that the AEOMGRU 
classification tool outperformed comparison 
algorithms. The classifier predicted the lung cancer 
genes with high throughput in less computation time 
for all the successful rounds. It indicates that the 
Artificial Ecosystem Optimizer helps train gene 
patterns to the Minimal Gated Recurrent Unit 
network proficiently during the lung gene pattern 
prediction. The effectiveness of the suggested models 
was compared to that of newly established bio-
inspired optimizer deep neural network approaches as 
GAANN, PSOANN, and classic GRU. Each round's 
accuracy and precision were evaluated using the false 
positive, false negative, true positive, and true 
negative values. The true positives and true negatives 
were observed higher, and the false negatives and 
false positives have shown the least count. These 
counts resulted in the highest accuracy and precision 
for the proposed model compared to existing models. 
 
5. CONCLUSION AND FUTURE SCOPE  

Thus, the similarity cluster-based gene duplication 
counting approach helps identify the MYC proteins 
influence percentage in lung cancer gene patterns. 
The overall results and discussion show that the 
Artificial Ecosystem Optimizer helps train gene 
patterns to the Minimal Gated Recurrent Unit 
network proficiently during the lung gene pattern 
prediction. It depicts the combined features of 
minimized forget gate character of GRU network and 
the consumer, producer, and decomposer operator's 
behaviors of the AEO algorithms helps to learn the 
gene patterns efficiently. It illustrates that the 
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combined features of the network have minimized 
forget gate character and the consumer, producer, 
and decomposer operator behaviors which helped 
learn gene patterns efficiently. The AEOMGRU 
classifier outperforms for gene expression pattern 
text data. Therefore, the classifier's flexibility is 
generalized to handle all the data-based text 
problems. At present, this classification and 
clustering tool's efficiency is tested with 
healthcare problems. With an average accuracy 
ratio of 99.08 percent, an average precision rate of 
99.2 percent, the least root means the square error 
of 0.2 percent, and a least mean absolute error of 
0.5 percent, the suggested classifier has the 
maximum efficiency of performance measures. 
Future research focuses on integrating the CNN 
classifier with the proposed optimizer to achieve 
100% efficiency in this domain and other domain 
problems.  

CONFLICT OF INTEREST(COI) 
 
The authors declare that they have no competing 
interests. 
 
REFERENCES 

[1] Chowdary, M. K., Nguyen, T. N., &Hemanth, 
D. J. (2021). Deep learning-based facial 
emotion recognition for human-computer 
interaction applications. Neural Computing 
and Applications, 1-18. 

[2] Carabet L, Rennie P, Cherkasov A 
(2018) Therapeutic Inhibition of Myc in 
Cancer. Structural Bases and Computer-Aided 
Drug Discovery Approaches. International 
Journal of Molecular Sciences, 20 (1), 
120. doi:10.3390/ijms20010120. 

[3] Dash, R. K., Nguyen, T. N., Cengiz, K., & 
Sharma, A. (2021). Fine-tuned support vector 
regression model for stock predictions. Neural 
Computing and Applications, 1-15. 

[4] Amanatidou A I, Dedoussis G V (2021) 
Construction and analysis of protein-protein 
interaction network of non-alcoholic fatty 
liver disease. Computers in Biology and 
Medicine, 131, 104243. 

[5] Gheisari, M., Najafabadi, H. E., Alzubi, J. A., 
Gao, J., Wang, G., Abbasi, A. A., & 
Castiglione, A. (2021). OBPP: An ontology-
based framework for privacy-preserving in 
IoT-based smart city. Future Generation 
Computer Systems, 123, 1-13. 

[6] Wang S, Zhu X-q, Cai X (2017) Gene Duplication 
Analysis Reveals No Ancient Whole Genome 
Duplication but Extensive Small-Scale 
Duplications during Genome Evolution and 
Adaptation of Schistosomamansoni. Front. Cell. 
Infect. Microbiol. 7:412. doi: 
10.3389/fcimb.2017.00412. 

[7] Billah, M. F. R. M., Saoda, N., Gao, J., & 
Campbell, B. (2021, May). BLE Can See: A 
Reinforcement Learning Approach for RF-based 
Indoor Occupancy Detection. In Proceedings of 
the 20th International Conference on Information 
Processing in Sensor Networks (co-located with 
CPS-IoT Week 2021) (pp. 132-147). 

[8] De Kegel B, Ryan C J (2019) Paralog buffering 
contributes to the variable essentiality of genes in 
cancer cell lines. PLOS Genetics, 15 (10), 
e1008466. doi:10.1371/journal.pg.1008466.  

[9] Nichio BTL, Marchaukoski JN Raittz RT (2017) 
New Tools in Orthology Analysis: A Brief 
Review of Promising Perspectives. Front. Genet. 
8:165. doi: 10.3389/fgene.2017.00165. 

[10] Poluri K M (2021) Protein-Protein Interactions: 
Principles and Techniques: Volume I. Springer 
Nature. 

[11] Shirmohammady N, Izadkhah H, Isazadeh A 
(2021) PPI-GA: A Novel Clustering Algorithm to 
Identify Protein Complexes within Protein-
Protein Interaction Networks Using Genetic 
Algorithm. Complexity. 

[12] Armenia, Wankowicz S A M, Liu D, Gao J, 
Kundra R, Van Allen E M (2019) Publisher 
Correction: The long tail of oncogenic drivers in 
prostate cancer. Nature 
Genetics. doi:10.1038/s41588-019-0451-6.  

[13] Omranian S, Angeleska A, Nikoloski Z (2021) 
PC2P: Parameter-free network-based prediction 
of protein complexes. Bioinformatics. 

[14] charya D, Dutta T K (2021) Elucidating the 
network features and evolutionary attributes of 
intra-and interspecific protein-protein interactions 
between human and pathogenic bacteria. 
Scientific Reports, 11 (1), pp 1-11. 

[15] Ascencio D, Diss G, Gagnon-Arsenault I, Dubé 
A K, DeLuna A, Landry C R (2021) Expression 
attenuation as a robustness mechanism against 
gene duplication. Proceedings of the National 
Academy of Sciences, 118 (6). 

[16] Hemminki A, Hemminki K (2005) The Genetic 
Basis of Cancer. In: Curiel D.T., Douglas J.T. 
(eds) Cancer Gene Therapy. Contemporary 
Cancer Research. Humana Press. 
https://doi.org/10.1007/978-1-59259-785-7_2. 



 
Journal of Theoretical and Applied Information Technology 

30th September 2022. Vol.100. No 18 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5245 

 

[17] Lepkes L, Kayali M, Blümcke B, Weber J, 
Suszynska M, Schmidt S,  Ernst C (2021) 
Performance of In Silico Prediction Tools for 
the Detection of Germline Copy Number 
Variations in Cancer Predisposition Genes in 
4208 Female Index Patients with Familial 
Breast and Ovarian Cancer. Cancers, 13(1), 
118. 

[18] Vazquez J M, Lynch V J (2021) Pervasive 
duplication of tumor suppressors in 
Afrotherians during the evolution of large 
bodies and reduced cancer risk. Elife, 10, 
e65041. 

[19] Zhu X, Tian X, Ji L, Zhang X, Cao Y, Shen 
C, Chen H (2021) A tumor 
microenvironment-specific gene expression 
signature predicts chemotherapy resistance in 
colorectal cancer patients. NPJ precision 
oncology, 5(1), pp 1-14. 

[20] Sha K, Lu Y, Zhang P, Pei R, Shi X, Fan Z, 
Chen L (2021) Identifying a novel 5-gene 
signature predicting clinical outcomes in acute 
myeloid leukemia. Clinical and Translational 
Oncology, 23(3), pp 648-656. 

[21] Abdelazim M A, Nasr M M, Ead W M. A 
Survey on Classification Analysis for Cancer 
Genomics: Limitations and Novel 
Opportunity in the Era of Cancer 
Classification and Target Therapies. 

[22] Jia D, Chen C, Chen C, Chen F, Zhang N, 
Yan Z, Lv X (2021) Breast Cancer Case 
Identification Based on Deep Learning and 
Bioinformatics Analysis. Frontiers in 
Genetics, 12. 

[23] Zhang J, Li, D, Zhang Y, Ding Z, Zheng Y, 
Chen S, Wan Y (2020) Integrative analysis of 
mRNA and miRNA expression profiles 
reveals seven potential diagnostic biomarkers 
for non‑small cell lung cancer. Oncology 
reports, 43(1), pp 99-112. 

[24] Bilal M, Raza S E A, Azam A, Graham S, 
Ilyas M, Cree I A, . Rajpoot N M (2021) 
Novel deep learning algorithm predicts the 
status of molecular pathways and key 
mutations in colorectal cancer from routine 
histology images. medRxiv. 

[25] Lai Y H, Chen W N, Hsu T C, Lin C, Tsao Y, 
Wu S (2020) Overall survival prediction of 
non-small cell lung cancer by integrating 
microarray and clinical data with deep 
learning. Scientific reports, 10(1), pp 1-11. 

[26] Zhao M, Chen Z, Zheng Y, Liang J, Hu Z, 
Bian Y, Wang Q (2020) Identification of 
cancer stem cell-related biomarkers in lung 

adenocarcinoma by stemness index and weighted 
correlation network analysis. Journal of cancer 
research and clinical oncology, 146(6), pp 1463-
1472. 

[27] Jiang M, Niu C, Cao J et al. (2018) In silico-
prediction of protein-protein interactions network 
about MAPKs and PP2Cs reveals a novel docking 
site variants in Brachypodiumdistachyon. Sci 
Rep 8, 15083. https://doi.org/10.1038/s41598-
018-33428-5. 

[28] A von der Dunk, SH, Snel B (2020) Recurrent 
sequence evolution after independent gene 
duplication. BMC EvolBiol 20, 98. 
https://doi.org/10.1186/s12862-020-01660-1. 

[29] Chauve C, Ponty Y Wallner M (2020) Counting 
and sampling gene family evolutionary histories 
in the duplication-loss and duplication-loss-
transfer models. J Math Biol 80, pp 1353–1388. 
https://doi.org/10.1007/s00285-019-01465-x. 

[30] J Paszek, P Górecki (2018) Efficient Algorithms 
for Genomic Duplication Models. in IEEE/ACM 
Transactions on Computational Biology and 
Bioinformatics, vol. 15, no. 5, pp. 1515-1524, 
doi: 10.1109/TCBB.2017.2706679. 

[31] Ruffalo M, Bar-Joseph Z (2019)Protein 
interaction disruption in cancer. BMC 
Cancer 19, 370. https://doi.org/10.1186/s12885-
019-5532-5. 

[32] Gueudre T, Baldassi C, Pagnani A, Weigt M 
(2020) Predicting Interacting Protein Pairs by 
CoevolutionaryParalog Matching. In: Canzar S., 
Ringling F. (eds) Protein-Protein Interaction 
Networks. Methods in Molecular Biology, vol 
2074. Humana, New York, NY. 
https://doi.org/10.1007/978-1-4939-9873-9_5. 

[33] Li Z, Ivanov, A, Su R et al. (2017) The OncoPPi 
network of cancer-focused protein-protein 
interactions inform biological insights and 
therapeutic strategies. Nat Commun 8, 14356. 
https://doi.org/10.1038/ncomms14356. 

[34] Chen Y, Wang W, Liu J, Feng J, Gong X 
(2020) Protein Interface Complementarity and 
Gene Duplication Improve Link Prediction of 
Protein-Protein Interaction Network. Frontiers in 
Genetics, 11. doi:10.3389/fgene.2020.00291.  

[35] Zhao W, Wang L, Zhang Z (2019) Artificial 
ecosystem-based optimization: a novel nature-
inspired meta-heuristic algorithm. Neural 
Computing and 
Applications. doi:10.1007/s00521-019-04452-x.  

[35] Kasongo S M, Sun Y (2020) A Deep Gated 
Recurrent Unit based model for the wireless 



 
Journal of Theoretical and Applied Information Technology 

30th September 2022. Vol.100. No 18 
© 2022 Little Lion Scientific  

 

ISSN: 1992-8645                                                                    www.jatit.org                                                    E-ISSN: 1817-3195 

 
5246 

 

intrusion detection system. ICT 
Express. doi:10.1016/j.icte.2020.03.002.  

[36] N Nezamoddini, A Gholami (2019) Integrated 
Genetic Algorithm and Artificial Neural 
Network. 2019 IEEE International Conference 
on Computational Science and Engineering 
and IEEE International Conference on 
Embedded and Ubiquitous Computing, New 
York, NY, USA, pp 260-262, doi: 
10.1109/CSE/EUC.2019.00057. 

[37] Jose Anand, J Raja Paul Perinbam, D 
Meganathan (2015) Design of GA-based 
Routing in Biomedical Wireless Sensor 
Networks. International Journal of Applied 
Engineering Research. 10 (4), pp 9281-9292. 

[38] Hamada M, Hassan M (2018) Artificial 
Neural Networks and Particle Swarm 
Optimization Algorithms for Preference 
Prediction in Multi-Criteria Recommender 
Systems. Informatics, 5(2), 
25. doi:10.3390/informatics5020025.  

[39] Izudheen S (2021) Intelligent Exploration of 
Negative Interaction from Protein-Protein 
Interaction Network and its Application in 
Healthcare. Psychology and Education 
Journal, 58(2), pp 10637-10645. 

[40] Lakshmi P, Ramyachitra D (2020) An 
Improved Genetic with Particle Swarm 
Optimization Algorithm Based on Ensemble 
Classification to Predict Protein-Protein 
Interaction. Wireless Personal 
Communications, 113(4), pp 1851-1870. 

[41] Ge R, Wu Q, Xu J (2021) Computational 
Methods for Protein-Protein Interaction 
Network Alignment. In Recent Advances in 
Biological Network Analysis, Springer, 
Cham. pp. 45-63.  

[42] Su X R, You Z H, Hu L, Huang Y A, Wang 
Y, Yi H C (2021) An Efficient Computational 
Model for Large-Scale Prediction of Protein-
Protein Interactions Based on Accurate and 
Scalable Graph Embedding. Frontiers in 
Genetics, 12.Database: 
https://www.ncbi.nlm.nih.gov/geo/. 

[43] Rostami, M., Berahmand, K., &Forouzandeh, 
S. (2021). A novel community detection-
based genetic algorithm for feature 
selection. Journal of Big Data, 8(1), 1-27. 

[44] Rostami, M., Berahmand, K., &Forouzandeh, 
S. (2020). A novel method of constrained 
feature selection by the measurement of 
pairwise constraints uncertainty. Journal of 
Big Data, 7(1), 1-21. 

[45] Nikzad-Khasmakhi, N., Balafar, M., Feizi-
Derakhshi, M. R., &Motamed, C. (2021). ExEm: 
Expert embedding using dominating set theory 
with deep learning approaches. Expert Systems 
with Applications, 177, 114913. 

[46] Chen, K., Franko, K., & Sang, R. (2021). SWe 
has structured model Pruning of Convolutional 
Networks on Tensor Processing Units. arXiv 
preprint arXiv:2107.04191. 

[47] Zhao C, Zang Y, Quan W, Hu X, Sacan A (2017) 
Hiv1-human protein-protein interaction prediction 
based on interface architecture similarity, in 2017 
IEEE International Conference on Bioinformatics 
and Biomedicine (BIBM) (Hong Kong: IEEE), pp 
97–100. doi: 10.1109/BIBM.2017.8217632. 

[48] Naz H, Ahuja S (2020) Deep learning approach 
for diabetes prediction using PIMA Indian 
dataset. Journal of Diabetes & Metabolic 
Disorders. doi:10.1007/s40200-020-00520-5. 

[49] Giriprasad S, Mohan S, Gokul S 
(2018) Anomalies detection from video 
surveillance using support vector trained deep 
neural network classifier. International Journal of 
Heavy Vehicle Systems, 25 (3/4), 
286. doi:10.1504/ijhvs.2018.094825.   

[50] Sun, X., Chen, W., Ivanov, S., MacLean, A. M., 
Wight, H., Ramaraj, T., ...&Fei, Z. (2019). 
Genome and evolution of the 
arbuscularmycorrhizal fungus 
Diversisporaepigaea (formerly 
Glomusversiforme) and its bacterial 
endosymbionts. New Phytologist, 221(3), 1556-
1573. 

[51] Skinnider, M. A., Johnston, C. W., 
Gunabalasingam, M., Merwin, N. J., Kieliszek, A. 
M., MacLellan, R. J., ...&Magarvey, N. A. 
(2020). Comprehensive prediction of secondary 
metabolite structure and biological activity from 
microbial genome sequences. Nature 
communications, 11(1), 1-9. 

[52] Yoshida, S., Kim, S., Wafula, E. K., Tanskanen, 
J., Kim, Y. M., Honaas, L.,&Shirasu, K. (2019). 
Genome sequence of StrigaAsiatica provides 
insight into the evolution of plant 
parasitism. Current Biology, 29(18), 3041-3052. 

[53] Wang, X., Morton, J. A., Pellicer, J., Leitch, I. J., 
& Leitch, A. R. (2021). Genome downsizing after 
polyploidy: mechanisms, rates, and selection 
pressures. The Plant Journal, 107(4), 1003-1015. 

 


